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Theoretical justification for heat flux limiter 0.15

James Sadler

May 10, 2021

In this section, we describe a semi-nonlocal kinetic model for the electron
heat flux. The model has no free parameters. It takes the more physically
motivated approach of placing a limiter on the perturbation to the electron
distribution function, rather than the usual ad-hoc limiter on the heat flux. If
the kinetic model is fitted by a heat flux limiter model, we find that the higher
value of fe = 0.15 is a much closer fit than other models with fe ' 0.02.

In the local transport model, assuming a weakly coupled plasma with Coulomb
logarithm ln Λ � 1, the electron heat flux is given by the Spitzer-Härm heat
flux [1]. This breaks down when the temperature gradient becomes so steep
that the electron transport is non-local, meaning that the Knudsen nonlocality
parameter KN = λmfp|∇Te|/Te approaches one. This expression contains the
electron temperature Te and electron Coulomb mean free path

λmfp = 2.5× 10−13
A

Z2 ln Λ

(
Te
eV

)2(
ρ

gcm−3

)−1
m, (1)

where ρ is the mass density, A is the ion atomic mass number and Z is the ion
charge state. KN is the ratio of the mean free path to the temperature gradient
scale-length.

The heat flux can be found from the electron Vlasov-Fokker-Planck equation

∂fe
∂t

+ v · ∇fe −
e

me
E · ∂fe

∂v
= Cee + Cei, (2)

where fe(t,x,v), v, −e, me, ne are the electron distribution function, velocity,
charge, mass and number density, respectively. E is the electric field, Cee

is the electron-electron collision operator and Cei is the electron-ion collision
operator. Magnetic fields have been neglected. Spatial gradients and electric
fields drive the distribution away from Maxwellian, whereas collisions restore it
to Maxwellian.

It is helpful to make the local approximation that collisions are strong,
meaning fe can be set as approximately isotropic Maxwellian fM (v, Te, ne) =
ne(
√
πvth)−3 exp(−y2), where v = |v|, y = v/vth and the electron thermal

speed vth =
√

2Te/me. We introduce a small perturbation f1(v), such that
fe = fM + f1 · v/v. This perturbation is a vector quantity and it has a spatial
direction, such that the distribution can now have an overall flow. This will
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allow us to find the flow of charge and heat induced by a temperature gradient
or electric field. In the ion fluid rest frame, the perturbation reaches a steady
state given by [2, 3, 4]

y∇fM −
e

mevth
E
∂fM
∂v

= − f1
λmfpy3

. (3)

In this equation, we have neglected the electron-electron collision operator and
retained only the electron-ion collisions on the right hand side. Due to the
Z2 dependence of electron-ion collisions, this is valid only in the limit Z →
∞. The electron-electron collision operator for f1 is much more complex [2].
Furthermore, it is usually smaller in magnitude than the electron-ion collisions,
so it will not change the results by much. We therefore expect the heat flux
result to be valid for Z → ∞, and electron-electron collisions will change it by
a factor of ' 2 for Z ' 1. The derivatives of a Maxwellian distribution are

∇fM =
fM
ne
∇ne +

(
y2 − 3

2

)
fM
Te
∇Te,

∂fM
∂v

= − 2y

vth
fM . (4)

This leads to the perturbation

f1 = −y4fMλmfp

(
eE

Te
+
∇ne
ne

+

(
y2 − 3

2

)
∇Te
Te

)
(5)

The electron current can be found from the velocity moment of the distribution
function

J = −4πe

3

∫ ∞
0

f1v
3 dv = 0. (6)

This expression can be derived [2] by substituting fe = fM +v · f1/v into the
definition of the electron current J = −e

∫
fevd

3v. There is one factor of v from
the definition of current, and also a factor of v2 from the spherical coordinates
Jacobian. Assuming there are no magnetic fields, the steady state Amperes law
means that J = 0. Oscillations on the electron timescale damp away, and the
electric field E reaches an equilibrium ambipolar value such that J = 0 and Eq.
(6) is satisfied. Substituting Eq. (5) into Eq. (6) and completing the Gaussian
integrals gives this value as

E = −Te∇ne
nee

− 5

2

∇Te
e

= −∇(neTe)

nee
− 3

2

∇Te
e
. (7)

This contains the electron pressure term and the thermoelectric temperature
gradient term. Substituting Eq. (7) into Eq. (5), the ambipolar Spitzer pertur-
bation is then simply

f1,S = −
(
y6 − 4y4

)
λmfp

∇Te
Te

fM (8)

This is plotted in Fig. 1a with the green line, and compared to the background
Maxwellian fM in blue. The perturbation has a complex shape, with a flow
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Figure 1: (a) Plots of the isotropic Maxwellian fM (blue) with the Spitzer
anisotropic perturbation (green) in a temperature gradient with nonlocality
KN = 0.4. This is unphysical because it exceeds fM at high velocity, so a
limited perturbation with f1 < fM (red) should be more accurate. (b) The
current caused by the anisotropy in the two models (arbitrary units). (c) The
heat flux caused by the anisotropy in the two models (arbitrary units).

of high velocity electrons at v ' 2.5vth. However, to keep the overall current
zero, there must be a return current of cold electrons at v ' vth. The resulting
current in Eq. (6), ∝ f1v

3, is shown in Fig. 1b. The electric field takes a
value such that the return current of cold electrons precisely matches the flow
of hot electrons down the temperature gradient, such that

∫
f1v

3 dv = 0. The
heat flux, proportional to the higher moment f1v

5, is plotted in Fig. 1c. It is
weighted more towards the faster electrons. As a result, there is an overall heat
flux down the temperature gradient, carried by faster electrons with v ' 2.7vth.

Integrating this curve [2] gives the overall heat flux qe = (4πme/3)
∫∞
0

f1v
5 dv.

The result is the Spitzer heat flux qS , given by

|qS | =
2me

3
v3th
|∇Te|
Te

λmfpne√
π

∫ ∞
0

y9(y2 − 4)e−y
2

dy =
16√
π
KNqfs. (9)

This result is plotted with the solid line in Fig. 2. The Spitzer heat flux is written
in terms of the free streaming heat flux qfs = neTevth, which is equivalent to
the energy flux if all of the electrons move in the same direction at the average
thermal speed vth =

√
2Te/me. The Spitzer flux is also directly proportional

to the nonlocality parameter KN , containing the temperature gradient. For
general Z, the Spitzer heat flux is |qS | = (3

√
π/8)κ‖(Z)KNqfs, where κ‖(Z) is

the transport coefficient, given in ref. [4].
Clearly the Spitzer theory breaks down if KN ' 1, since the heat flux can-

not exceed the free streaming limit. This can also be seen in Fig. 1a, since
the perturbation is larger than fM when KN ' 1. Physically, we must have
fe > 0 and so the perturbation must be less than the Maxwellian |f1| < |fM |.
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Figure 2: Plots of the heat flux (normalized to the free streaming flux
qfs = neTe

√
2Te/me) versus the temperature gradient. The temperature gra-

dient is written in a dimensionless form as the nonlocality parameter KN =
λmfp|∇Te|/Te. The solid line is the Spitzer model, which breaks down for high
KN . The semi-nonlocal kinetic results (crosses) are fitted by a flux limiter
model Eq. (11) with fe = 0.02 or fe = 0.15. The best fit is using Eq. (12) with
fe = 0.4. Results are shown for Z → ∞ and are expected to vary by a factor
' 10 for Z ' 1.

Considering Eq. (8), there are always some electrons with y � 1 that lead to
|f1| > fM . This is due to the inadequacy of the fM , f1 expansion, and higher
order terms are needed to keep fe positive everywhere. However, at y � 1, f1
is exponentially small and so this breakdown of the theory does not affect the
heat flux too much when KN � 1. The Spitzer result only becomes significantly
wrong when |f1| ' fM in the heat flux region with y ' 3. Setting |f1| = fM
in Eq. (8) with y = 3, we find an upper limit for the validity of the Spitzer
heat conductivity KN ' (y6 − 4y4)−1 = 0.0024. Due to the faster, less colli-
sional electrons carrying the heat flux, the Spitzer theory starts to break down
at KN � 1.

In reality, at this point, fe becomes non-Maxwellian and higher order terms
are needed in the expansion. This results in the full nonlocal heat flux model,
e.g. [5]. However, a simpler and physically motivated fix to the Spitzer model
is to retain the fM , f1 expansion and simply limit the size of f1 to be |f1| < fM ,
such that fe remains positive everywhere. This requires imposing a perturbation
limiter so that

f̃1 =
f1

1 + | f1fM
|
, (10)

where f1 is given by Eq. (5) and f̃1 is the limited perturbation. However, this
limiter changes the current J ∝

∫
f̃1v

3 dv, so then a different E value is needed
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to make J = 0 and the Spitzer value Eq. (7) is no longer correct. In general, for
a given value of KN , Eqs. (10), (5) and (6) must be numerically iterated to find
the correct E value that gives J = 0. This gives the equilibrium solution shown
in Fig. 1a. For KN � 1, f̃1 is equal to the Spitzer perturbation f1,S . However,
for larger KN , it is significantly less. Fig. 1 shows the case with KN = 0.4.
Notice how the tail of f̃1 has been cut down by the limiter, so that it is less than
fM . However, the slower part of f1 is also affected, since now not as much return
current is needed to balance the current of the fast electrons. The current of
this f̃1 distribution is shown in Fig 1b. The return flux of colder electrons still
exactly balances the forward flux of hot electrons. However, the magnitudes
of these fluxes are less. The resulting heat flux is shown in Fig 1c. Although
there is still a positive heat flux, it is significantly less than that predicted by the
Spitzer perturbation. The limiting of f̃1 to be less than fM therefore significantly
reduces the heat flux below the Spitzer prediction. However, for KN � 1, the
limiter is not active and we have f̃1 → f1,S .

The heat flux of this semi-nonlocal model is shown in Fig. 2 with the crosses.
For KN � 1, it agrees with the Spitzer model. However, the numerical solution
diverges away from qS at higher nonlocality, and it does not exceed qfs. The
deviation first starts to occur at Kn ' 0.002, as predicted earlier.

Typically in simulation codes, the heat flux is fitted by a limiter of a similar
form to Eq. (10), given by

q = qS

(
1 +

|qS |
feqfs

)−1
, (11)

where the constant fe is known as the heat flux limiter. This model is shown
in red for fe = 0.02 and blue for fe = 0.15. It is clear that the fe = 0.15 model
is significantly closer to the kinetic results. A least squares optimization of the
relative errors found an optimal value of fe = 0.18. An even better fit is given
by

q = qS

(
1 +

√
|qS |
feqfs

)−2
, (12)

with fe = 0.4. This model is shown by the green dashed line in Fig. 2.
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